人类社会排放的CO2等温室气体,造成全球气候变暖和海洋酸化,探索和实施碳减排途径和方法已刻不容缓。利用
微藻将工业源CO2直接转化为生物燃料,在碳中性能源体系的建设中具有重要的战略意义。但是,工业微藻如何高效固定CO2呢?中国科学院青岛生物能源与过程研究所单细胞中心等发现,作为一种
工业产油微藻,微拟球藻细胞集至少三种碳浓缩机制(CO2 Co
ncentrating Mechanism,CCM)的特征于一身。这一全局性的CCM系统结构蓝图的揭示,为在工业微藻中设计和改造“超级
二氧化碳固定模块”奠定了基础。
目前地球大气中的CO2含量约0.04%。为了将环境中如此低浓度的CO2富集在叶绿体中Rubisco(核酮糖-2-磷酸羧化氧化酶)的周围,从而进行高效的光合作用,自养生物进化出了形形色色的CCM系统,在细胞代谢网络中主动地供应或回收无机碳分子。因此,CCM系统蕴含着挖掘和改造微藻细胞工厂固碳能力的奥妙。
微拟球藻(Nannochloropsis spp.)是一种可利用海水或淡水、在室外大规模培养的工业微藻,具有生长速度快、油脂含量高、合成EPA等高值不饱和脂肪酸等优点,因此已经成为工业产油微藻分子育种的主要研究体系之一,也支撑着国内外许多微藻规模固定二氧化碳的示范工程。
单细胞中心魏力与德国鲁尔大学Mohamed El Hajjami等合作,综合运用条件序列和时间序列的转录组、蛋白组和代谢组等系统生物学手段,全面解析了海洋微拟球藻(N. oceanica)在低碳条件下特异性启动的基因群体和代谢模块,从而揭示了全局性的CCM系统结构蓝图。研究发现,在微拟球藻细胞的固碳体系中,至少存在三种CCM的特征,包括以碳酸酐酶和碳酸氢盐转运体为主导的生物物理CCM、类似高等植物C4光合固碳途径的生物化学CCM,以及以线粒体碳酸酐酶和呼吸链为主的本底CCM。而且支撑这些特征的具体机制,与实验室模式真核微藻如莱茵衣藻(绿藻)和三角褐指藻(硅藻)等相比,具有相当显著乃至让人惊异的差异。这些全基因组水平的发现,为在工业产油微藻中系统性地设计和构建“超级二氧化碳固定模块”奠定了基础。