目前,利用
风力发电已成为风能利用的主要形式,受到世界各国的高度重视,而且发展速度最快。本文主要对风力发电控制系统基本架构与风力发电应用中的电控系统及其新型控制器选择和应用作分析说明。
风力发电组
1前言
风能是非常重要并储量巨大的能源,安全、清洁、充裕,能提供源源不绝而稳定的能源。“十五”期间,能源技术领域中所设立的后续能源技术是作为发展重点的。后续能源包括核能、可再生能源、氢能、燃料电池等,覆盖了除矿物能源以外的几乎所有能源领域,其中风能、太阳能为主攻方向。目前,利用风力发电已成为风能利用的主要形式,受到世界各国的高度重视,而且发展速度最快。
风能产业作为一个新兴的有前景的高新技术产业。2020年我国风电总装机容量要达到3000万kW的目标,为风能产业的发展提供了很大的空间。据统计,架设5公里电线及以后的电费投资,远远大于太阳能风力发电系统的一次性投资,足以让您一劳永逸。
风力发电有三种运行方式:一是独立运行方式,通常是一台小型风力发电机向一户或几户提供电力,用蓄电池蓄能,以保证无风时用电;二是风力发电与其他发电方式(如柴油机发电)相结合,向一个单位或一个村庄或一个海岛供电;三是风力发电并入常规电网运行,向大电网提供电力,常常是一处风电场安装几十台甚至几百台风力发电机,这是风力发电的主要发展方向。而MW级风力发电技术早己开始研发。
在架构上,风力发电系统中两个主要部件是风力机和发电机。风力机向着变浆距调节技术发展、发电机向着变速恒频发电技术发展,这是风力发电技术发展的趋势,也是当今风力发电的主要技术。
应该说国内风电设备制造行业的迅猛发展,国内市场可供用户选择的风机类型越来越多,随之而来的是对风机稳定性和性能的关注。
风机电控系统的快速、可靠性和稳定性很大程度上决定了一款风机的成功与否,所以它是风力发电应用技术中的核心部件。而电控系统的性能主要取决于所选方案和所采用的零部件。为此,本文主要对风力发电控制系统基本架构与风力发电应用中的电控系统及其新型控制器选择和应用作分析说明。
2风力发电控制系统基本架构
2.1系统构成
图1为风力发电控制系统网络拓扑。从图1所知,风电机组电控系统是对风电机组自动启动、停机、平稳并网、双速切换、自动对风、数据检测和处理、故障记录及自动保护等就地控制功能。风电厂由三部分组成:就地控制部分、中央集控部分与通信部分。根据不同风机的应用通信部分分为两部分:风机与风机间或风机与控制中心的网络通信部分与风机内部控制通信部分。
2.2网络结构及其系统主要部件与功能
从图1可知,风电作为典型的分布式控制系统,采用光纤及工业交换机组成环形网络结构,要求网络设备可以在高粉尘、高寒、高热、强电磁环境中运行,实现宽带、可靠稳定的传输风机的各种参数。
其系统主要部件与功能如下:
⑴SCOM3024是专门针对电力系统高等级变电站设计的工业交换机。主要应用在220kV、500kV、700kV超高压变电站继电保护系统中。
⑵S1COM3000系列:卡轨式,提供3个1000M端口,6个10/1000base-TX接口,支持WEB管理,Telnet,SNMP,基于SNMP的网管,RMON、DT-ring2.0、RSTP、MSTF功耗小于56W,为本质安全型工业以太网交换机。
⑶KIEN1005风机机头控制器,应用于风机内部的控制通信部分。
⑷采用了SCOM3000、KIEN2032、KIEN6000部件,其应用为:风机与风机间或风机与控制(检测)中心的网络通信部分;其KIEN6000部件应用在控制中心,完成风场SICOM3000等工业交换机数据落地,同时启用三层功能,与上级网络隔离。
2.3关于风电场的监控系统
由于风电场单机容量小、数量多,为了确保各台风力机的安全运行,风电场设置有先进的计算机监控系统,该系统一般由地面监控(或称就地监控-LCS)(可从图1看出)和中央监控(CMCS遥控)两部分组成,其中就地监控主机可使用工控机(如ARK3382型),就地监控包括如下功能:
⑴运行人员可以从就地控制盘前计算机屏幕上了解到各台风力机的运行状况,如:该风力机处风速、发电机电压、电流、功率因数、主轴转速、齿轮箱及轴承温度等等。
⑵可以通过控制盘上的键盘,方便地修改风力机的保护定值,如过压保护整定范围,频率保护整定范围,风速极限值的修改等等。
⑶该控制系统能根据自己所检测到的风速、风向情况自动发出开机寻找风向(即自动偏航)或停机的控制命令,同时还能进行自我诊断风力机是否存在故障、是否需要停机。该系统还能对电网进行检测,如发现电网电压、频率工作不正常则立即停机,待电网恢复正常后自动起动。
⑷该控制系统具有先进的记录功能,能记录所有发生过的故障或不正常运行状态,并告诉运行人员发生故障的时间。该系统还能进行产量报告,能记录该风力机的月发电量,及累计发电量和运行小时数。
中央控制系统设在控制室内,通过监视器可以了解到整个风场各台风力机的运行状况。中央控制系统除主机外,还有一套备用设备,可供主机故障时投入,可随时向人们提供所需的报告。
3风电机组电控系统结构中的控制器应用
3.1控制器是整个电控系统的核心
其主要任务是控制风机根据风能的变化调整输出,以及风机在运行过程中的各种数据检测、系统保护、通讯等功能。整个控制系统的输入输出点数并不多,一般不多于300点。如对MW级风力发电机组控制系统的特点是点数不多(整个控制系统的输入输出点数并不多,一般不多于300点)以及数据计算量大,尤其是远程监控系统、故障检测及自复位功能的应用使控制器的数据计算量很大。由于同一时间不同优先级事件的存在,控制器必须按照事件的重要程度执行不同的扫描周期。
这些特点要求控制器具备高速度、支持多优先级多任务程序结构、支持高级算法等功能。此外,为保证系统各控制器与变频设备之间通讯的可靠性及实时性,控制器还必须支持现场总线及远程监控使用的工业以太网通讯。
3.2传统控制器的不足与问题的解决
迄今为止,控制器解决方案由大量的微控制器和专有的总线系统组成。市场上常见的风力发电机控制器的开发能力已经达到极限。在控制器、厂房生产计划系统和远程数据传输系统等各种功能单元的状况下,实现其接口互嵌是非常困难的。另外,传统的控制器仅仅提供有限的资源,只能够提供有限的监控和诊断功能。这必将无法满足风力发电机和生产厂商不断增长的需求。用户十分期待拥有更好的分析和诊断设备。尤其在应用于风力电场时,电网公司对灵活的网络管理和快速的反映时间有着高要求。
由于工控机提供的开发平台也是开放性的,它可以轻易地解决不断增长的、和外设相兼容的接口需求,是当今新型风电机组电控系统的理想选择。它能实现技术开发的首要目标,即达到提升发动机效能、减少载荷、增加操作便利性,从而减少成本、获取更多利润的目的。值此,以与嵌入式ARK3382无风扇工控机与KT98和KT97可编程控制器(PLC)为例作为风电机组电控系统的核心部件在风力发电中应用作介绍。
4嵌入式无风扇工控机ARK3382型作为控制器在风力发电中的应用
当今作为自动化系统(如SCADA系统)是以计算机为基础基于工业以太网的生产过程控制与调度自动化系统。它可以对现场的运行设备进行监视和控制,以实现数据采集、设备控制、测量、参数调节以及各类信号报警等各项功能。各种采集信号及控制信号通过工业以太网汇总到其中最前端的数据汇总处理机——嵌入式无风扇工控机。
4.1选择嵌入式无风扇工控机的原因
嵌入式工控机产品旨在为用户的开发应用提供更快速、更方便、更简单的解放方案。嵌入式设计、坚固的外壳、强大的计算技术,这些都保证了系统的稳定性和灵活性。该系列产品能满足用户对于强固、紧凑的工业计算平台的需求以及能够用于各种应用的内置I/O。其主要技术特征为:
⑴性能可靠
①具有铝质外壳
如ARK3382系列产品的铝质外壳和散热片设计使系统不仅具有高散热性,而且具有高抗腐蚀性。这使设备在户外环境下运行时具有高可靠性。
②无风扇设计
紧凑的嵌入式机箱没有任何风扇设备,如CPU风扇、系统风扇、电源风扇等。扩展MTBF设计极大减少了系统的维护需求。
③优化的内部线缆设计
对于一般嵌入式电扇而言,线缆用于连接接口与CPU板。内部线缆常常因线缆破损、连接不良或安装错误而导致系统故障。
⑵结构坚固
①高抗冲击性和高抗振性
凭借其板载CPU、内存、内存和加固的接口,如ARK3382系列产品能够承载高达70G的冲击和7G的振动,并且符合MIL-STD-810F。此外,对于一些极易产生冲击与振动的环境,为了实现更好高抗冲击性和高抗振性,DRAM可以选择性被固定在某个位置。
②超强散热设计
嵌入式工控机有散热管和铝质散热片,能够支持-40℃~70℃的宽范围工作温度。
⑶易于安装
①尺寸紧凑、体积簿、重量轻,因此能够节省工作空间。
②为了满足多种应用需求,嵌入式工控机支持多种安装方式,如导轨式安装、壁挂式安装及桌面安装等。
概括此类嵌入式无风扇工控机的特征是小体积发挥大功用。以上也这就是为何嵌入式工控机成为更好选择的依据。由于嵌入式无风扇工控机是系列的产品,选择了研华ARK3382系列嵌入式工控机。
4.2ARK3382嵌入式无风扇工控机为风力发电系统的前端——电控系统的核心应用
ARK3382可以提供4个以太网的接口,在前端可以汇集更多的数据,在网络方面可以采用链路聚合以及LANBvpass的网络技术(图2中黑色箭头所示),有效地提高了网络的传输效率和传输的可靠性。图2是ARK3382嵌入式无风扇工控机为风力发电系统的前端与网络技术应用示意框图。
⑴ARK3382能够提供3个以上的网络接口
有良好的兼容特性,可以和下游的设备组成有机的连接。主频必须1G以上,并且能够配合用户的程序稳定的运行。2个RS-232接口,一个USB接口。尺寸要求能够放在风机设备里面,重量轻。AT供电模式,直流供电,不能干扰其他的设备。
由于设备要在风塔内运行,风塔内的环境比较严苛,要求温度-20℃~60℃,抗灰尘,无风扇设计,24小时不停机运行。要求带一个15监控屏,直流供电。
⑵ARK3382适合无人监守工作站
由于风扇是在恶劣环境下最容易出问题的故障点,ARK系列工控机的无风扇特性大大提高了机器的MTTF(平均无故障时间)。传导散热拥有良好的密封性,可以有效的隔绝灰尘腐蚀性气体对信号传导点的氧化作用而导致的宕机,减少维护费用,适合在电力监控点及DCS应用的高灰尘、温度变化比较大的无人职守场合使用。RK-3382使用的集成多网口allinone方案,不用再通过扩展方式,可以节省成本。
4.3采用可编程控制器(如KT98和KT97)编程控制器风力发电系统的前端——电控系统的核心应用
该网络使用2台KT98分别作为机舱控制器和变桨控制器,1台KT97作为主控制器。他们的主要功能为:
⑴机舱控制器。负责处理各传感器(含风速风向仪)、输入输出点的信号采集、双馈变频器给定计算以及与双馈变频器、变桨控制器、主控制器之间的数据通讯。
⑵变桨控制器。处理变桨系统信号采集,负责进行变桨系统计算,生成变桨变频器,负责变桨变频器及机舱控制器、主控制器之间的数据通讯。
⑶主控制器。负责与机舱控制器、变桨控制器之间进行以太网通讯,远程监控系统通讯以及塔筒底部的信号采集。
3个控制器之间采用以太网通讯,保证了通讯速率。控制器与变频器之间采用CAN总线通讯,速率可达1MbVte/s。在保证速率的前提下,通讯可靠性也得到了提高。这样构成的控制结构具有分工明确、实时性强、稳定可靠的特点。KT98和KT97可编程控制器(PLC)为ABBAC3190系列。
5风机并网逆变电源
风机并网发电是将风力发电机所发出的交流电经过整流逆变成交流电并馈送电网。同太阳发电一样,风力发电是新能源发电走向可持续发展的必由之路。
风机并网发电系统通过把风能转化为电能,直接通过风力发电并网逆变器,把电能并到电网上。图3为风机并网逆变电源方案示意图。近年来,大型并网风力发电机组引入我国,大量风电机组安装在风资源丰富地区组成风电场,接入地区电网供电。
下面仅以风力(或太阳能)发电专用正弦波逆变电源作简介。
风力发电专用逆变电源是太阳能、风力发电系统的核心部件,本电源针对新能源发电系统的特点设计制造,主要应用于太阳能电站、风力发电站,风、光、油、蓄互补发电系统和户用太阳能供电系统。其工作原理见图4所示框图。
其性能特点为:DSP芯片控制,智能功率模块组装,纯正弦波输出,输出稳压、稳频;具有过压、欠压、过载、短路、输入极性接反等各种保护功能,而逆变效率≥85%,具有交流旁路功能,输入输出优异的EMI/EMC指标,可配备RS232/485接口,是高可靠性、高效率的正弦波逆变电源。
6结语
从以上分析可知,风机电控系统的核心部件——控制器(嵌入式工控机)是用于风力机的监控和控制两个方面。该嵌入式工控机作为风力发电系统的前端,逐步取代由微控制器和专有的总线系统组成的传统控制器。由于它具有独特的优势,所以基于嵌入式工控机前端的风力发电控制系统是实现提升发电系统效能、减少成本、获取更多利润的有效途径。